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Abstract 
Autonomous UAVs provide a platform for intelligent 
surveillance in application domains ranging from 
security and military operations to scientific 
information gathering and land management.  
Surveillance tasks are often long duration, requiring 
that any approach be adaptive to changes in the 
environment or user needs.  We describe a decision-
theoretic model of surveillance, appropriate for use on 
our autonomous helicopter, that provides a basis for 
optimizing the value of information returned by the 
UAV.  From this approach arise a range of challenges 
in making this framework practical for use by human 
operators lacking specialized knowledge of autonomy 
and mathematics.  This paper describes our platform 
and approach, then describes human-interaction 
challenges arising from this approach that we have 
identified and begun to address. 

 
 

UAV-based Surveillance 
One of the earliest applications of powered air vehicles 
was to gather information about conditions on the ground, 
exploiting the relatively high speed and broad view offered 
by these machines to, e.g., provide guidance to World War 
I artillery units and track enemy movements.   Similar 
applications quickly emerged in other areas such as 
security, land management and scientific research. 
Unmanned aerial vehicles (UAVs) have the potential to 
dramatically increase the availability and usefulness of 
aircraft as information-gathering platforms.   As UAV 
technologies improve and the number of such vehicles 
increases, costs will come to reflect economy of scale and 
decreased weight and complexity made possible by not 
having to support human occupants.  Reduced cost should, 
in turn, make UAVs available to a wider and less 
specialized set of users and for increasingly diverse 
purposes. This presents a challenge: how best to 
accommodate increasingly diverse missions and users of 
UAV-based observation platforms. 
 UAVs in operational use have been employed 
mainly for reconnaissance and surveillance (DoD 2002).  
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Reconnaissance tasks are intended to acquire information 
about a particular area at a particular time, generally to 
inform a specific impending decision.  We generalize the 
normal usage slightly in our work to include any once-only 
observation task.  By this definition, a UAV helicopter 
assessing the suitability of a potential landing spot would 
be performing reconnaissance, as it would when handling a 
human user’s request to check a building entrance for 
intruders.  Surveillance tasks differ from reconnaissance 
tasks in that they involve repeated or continuous 
observation intended to maintain awareness of some entity 
or geographical area.  Because surveillance generally takes 
place over a lengthy period, it is particularly appropriate to 
carry out these missions with autonomous vehicles rather 
than, as is now the norm, with humans as remote pilots. 

However, performing surveillance autonomously 
is particularly challenging for several reasons.  One is that, 
for surveillance of multiple, spatially-separated targets, the 
core autonomy problem of deciding where to observe next 
is inherently a difficult scheduling problem.  Choosing to 
observe one site has a cascading effect on both the time-
cost and desirability of all subsequent observation tasks.  
This coupling of current and future choices suggests 
considering each observation to be part of a schedule 
whose utility can be compared to possible alternative 
schedules.   However, unlike typical AI scheduling 
problems, the surveillance problem requires allowing for 
the possibility that some sites should be visited more often 
than others due to differences in their importance and in 
the rates at which observed information becomes obsolete.  
Given an overall goal of maximizing the value of 
information returned to the user, a surveillance scheduler 
should, in many cases, omit visits to some (possibly most) 
sites entirely in order to observe the most important ones at 
a higher rate.  Surveillance scheduling thus combines task 
ordering with task selection, a combination notorious for 
increasing the computational complexity of any solution. 

Many factors can have a dramatic effect on the 
effectiveness of surveillance activities and must therefore 
be taken into account during the scheduling process. For 
instance, evaluating the desirability of a candidate site will 
typically require estimating how long it will take to get to 
the site and take any needed measurements.  However, 
even assuming that the site is at a known, fixed location, 
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UAV-relevant variables such as weather, initial velocity 
and required turn angle from the last visited site can all 
have a large impact on traverse time.  Other factors affect 
what kind of approach will be effective in comparing 
alternatives.  For instance, an algorithm that works well 
when the number of surveillance sites is small (say, 5) may 
not work well when the number of sites is an order 
magnitude larger.  Similarly, algorithms that attempt to 
take advantage of problem structure – e.g. spatial 
“clumping” of sites or non-uniform distribution of event 
probabilities across these sites – will not be effective in 
problem instances lacking these structural features.  
Current work in autonomous surveillance falls far short in 
dealing with the range of qualitatively distinct surveillance 
scheduling problems that might be encountered in real 
operational contexts. 

 High-level autonomous control is provided by 
Apex, a reactive, procedure-based planner/scheduler used 
for mission-level task execution, navigation, response to 
health and safety contingencies and interaction with human 
users.  Surveillance scheduling in a realistically dynamic 
mission context – i.e. where flight conditions and user 
needs can change often and unexpectedly – is seen as a 
special case of the problem of multitask management, a 
central Apex capability and research focus (Freed 1998, 
2000).  Though the approach it incorporates has proven 
effective for some relatively complex tasks (John et al. 
2001; Freed et al. 2003), the surveillance problem has 
proven much more demanding.  Our work on autonomous 
surveillance has therefore focused on identifying or 
designing candidate surveillance scheduling approaches, 
characterizing their strengths and weaknesses, and 
incorporating the most effective approaches into Apex.  
We allow for the possibility that human-directed 
surveillance – i.e. where a human operator decides where 
to observe next – will prove more effective than any 
known algorithm in some circumstances.   

The Autonomous Rotorcraft Project 
Our work on surveillance scheduling is one element of the 
Autonomous Rotorcraft Project (Whalley et al. 2003), an 
Army/NASA effort to develop high-level autonomy for 
airborne observation missions of interest to both 
organizations. The vehicle selected for the project, a 
Yamaha RMAX helicopter (see Figure 1), can fly at low 
speed or remain in a hover for approximately 60 minutes 
while carrying a 65lb. payload.  Having completed an 
initial round of autonomous flight tests using newly 
developed flight control software, we expect that the 
vehicle will soon be capable of prolonged autonomous 
flight in an agile, aerodynamic flight mode.   This will 
extend its effective speed, range and maximum flight 
duration and thus, we believe, make it practical as an 
Intelligent Surveillance and Reconnaissance (ISR) 
platform and as a demonstration of how ISR capabilities 
might be implemented on other platforms such as fixed 
wing aircraft and motorized blimps. 
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A key part of our effort is a framework for 
evaluating surveillance decision performance in a wide 
range of mission scenarios.  Like Massios, Dorst and 
Voorback (2001), we take a decision-theoretic approach to 
defining the surveillance problem.  The value of making an 
observation at a particular time and place, then returning 
that information to a user, depends on the kinds of events 
that might be observed and the value the user places on 
knowing about them.  As the value of information often 
depends on when the user receives it (e.g. it is better to be 
informed of a break-in as it is beginning than long after the 
thief has escaped), surveillance decisions should take into 
account temporal characteristics of the task environment 
such as the likelihood of an interesting event occurring 
over a given interval and the change over time in the value 
of observing that event after it occurs.  Our approach treats 
observations as boundaries on time-intervals in which the 
user has been ignorant of events occurring at a given site 
(target).  The expected cost of ignorance (ECI) for a given 
target over a given interval is: 
 

ECI τ (t1, t2) =  dt

 
where (t1,t2) is the interval between observations measured 
from some mission start time t0, p(t) is probability density 
function for the occurrence of some cost-imposing event E 
(e.g. a break-in) and cost(d) is a function describing the 
expected cost imposed by E as a function of the time from 
occurrence to intervention.  The expected cost of ignorance 
is thus the sum, for all points in the interval, of the 
probability of the event occurring at that point times the 
expected cost if it occurs at that point.  With cost and 
probability functions appropriate to model events of type 

Figure 1.    Project platform: Yamaha RMAX 
  

 



E, the total cost of a given surveillance schedule is the sum 
of ECIs for all inter-observation intervals for all targets.  
The value of observations resulting from following the 
schedule is the worst case schedule cost (no observations 
at all) minus the cost of the selected schedule.  The goal of 
a surveillance algorithm is to maximize that value.  See 
Freed et al. (2004) for more detail on this approach.   
 

Human-Interaction Challenges 
As described below, we have identified a range of human-
interaction issues arising in from our decision-theoretic 
approach to autonomous surveillance and have made some 
progress addressing the first of these issues. 
 
Role of humans in deciding surveillance pattern 
Surveillance is often a lengthy, repetitive and largely 
uneventful process that strains human vigilance and 
morale.  This makes it an excellent application for 
autonomy.  However, it is difficult to formulate algorithms 
that perform well at full range of possible surveillance 
missions.  This suggests that it may sometimes be 
desirable to have human operators select and order 
surveillance observations.  To better understand human 
strength and weaknesses in making these decisions, and 
thus to become better able to allocate responsibilities 
between an autonomous controller and human operator, we 
compared human performance against that of a 
surveillance algorithm using a set of 243 mission 
scenarios.  These scenarios, intended to represent a 
significant portion of the diversity of surveillance missions 
in realistic NASA and Army contexts, differ in 5 
dimensions (independent variables), each with 3 possible 
values: 
 

Number of observation targets: 4, 8 or 16 
Spatial scale: .002, .02, .2 of vehicle range 
Spatial distribution: uniform, globular, 2-cluster 
Cost max distribution: fixed, uniform, 2-cluster 
Cost rate distribution: fixed, uniform, 2-cluster 

 
As a candidate autonomous surveillance decision-method, 
the study used a variant of the 2-opt algorithm (Reinelt 
1994) for the Traveling Salesman Problem modified to 
generate repeating sequences and to use a history-sensitive 
UAV kinematics model to compute travel time between 
targets.  Schedules for each scenario generated by this 
method were evaluated using the ECI approach outlined 
above.    

For this initial study, our assessment of human 
surveillance performance was based on data from a single 
subject.  Each scenario was depicted as a map (see Figure 
2) with observation targets colored-coded to indicate cost-
rate (urgency) and shape-coded to indicate maximum cost 
(importance).  The start/end point (home) was depicted as 
a distinctive icon and spatial scale as a dotted-line circle, 

centered on the home point, whose radius represented a 
fixed proportion of the vehicle’s range.  The subject used a 
mouse to select and modify a route.  The amount of time 
taken to select each route was displayed, though no time 
limit was enforced.  The subject was very familiar with the 
surveillance task but was not given training on effective 
strategy or provided with any decision aids.  Comparison 
between human and algorithm performance (see Table 1) 
showed a number of trends including the following: 
 
• The human subject performed poorly in scenarios 

where surveillance targets were nearby one another 
(small spatial scale).  In these cases, optimal paths are 
often complex and unintuitive due to the relatively 
large effect of vehicle kinematics on travel time. 

• The subject did relatively well when the number of 
targets is large (16), but poorly with few targets (4) 
where the importance of small differences in 
optimality gets magnified by repetition 

• The subject performed  well where there was a lot of 
structure to reason about, especially including spatial 
structure (sets of targets “clumped” together), but also 
structure in the distribution of urgency and 
importance; in contrast, the subject did poorly when 
targets were spaced uniformly (no clumps) and with 
uniform distributions of other features 

 
Future studies including a larger number of human 
subjects provided with training and decision aids will 
enable a more reliable and detailed assessment of relative 
strengths and weaknesses. 
 
Handling reconnaissance requests 
The problem of how to choose where to observe next has 
been the focus of our efforts so far.  However, other issues 
relating to the need to interact with human users clearly 
must be addressed if the autonomous surveillance 
approach we are developing is to become practical for 
widespread use.  First, most practical applications will 
require allowing users to make reconnaissance requests 
that must be executed against the “background” 
surveillance task.  Extending our surveillance algorithms 
(we are combining several) to insert reconnaissance 
actions into the current schedule only addresses part of the 
problem since there are many ways to accommodate such a 
request.  A requestor might mean “drop everything and go 
perform this observation” but might also be making a more 
nuanced request such as “make this observation at the most 
convenient time in the current schedule” or “optimize 
scheduling of this reconnaissance observation using the 
same framework used to schedule surveillance 
observations.”  To handle these different kinds of requests, 
the system needs to engage in some kind of dialogue with 
the user to understand what degrees of freedom exist in  



 
Figure 2.  One of 243 scenarios used to evaluate human/algorithm performance 

 
scheduling the proposed action and to insure that the user 
understands and accepts the observation delays that will 
result from carrying it out.   
 
Acquiring model data from the user 
Our approach to surveillance scheduling relies on 
quantitative, temporally structured models of the user and 
environment.  For instance, an autonomous surveillance 
agent might be given a set of observation goals that 
include checking for fires in a particular region of forest.  
Quantifying the expected cost of remaining ignorant of the 
state of that site requires a model of how a fire there might 
spread and how costly the user considers a fire that has 

spread for a given interval.  To characterize the mounting 
cost of a forest fire, the user might realize that fires tend to 
start slowly and then spread rapidly, but eventually slow 
down as they consume the fuel in a region and approach 
natural boundaries.  A mathematician might choose to 
model this as an appropriately parameterized sigmoid 
function.   

An autonomous vehicle in daily use for fire 
surveillance is likely to be attended by people who know a 
lot about forests and forest fires, but are not 
mathematicians.  Nonetheless, they may need to construct 
such models and modify them periodically.  For instance, 
seasonal changes in temperature and humidity, new 
construction, and manual thinning of the tree canopy or  



Pct. Adv. N Spatial
4 8 16

Scale Rate Cost 2-Cluster Globular Uniform 2-Cluster Globular Uniform 2-Cluster Globular Uniform
0.002 Fixed Fixed 0 0 0 0 14 0 6 31 -3

Clustered 0 0 0 0 16 5 7 29 7
Uniform 0 0 -1 42 24 5 2 10 10

Clustered Fixed 0 0 0 0 0 11 0 0 11
Clustered 0 0 0 0 0 0 0 0
Uniform 0 0 0 0 0 0 0 0

Uniform Fixed 143 47 0 130 19 47 10 93 4
Clustered 22 28 23 0 12 6 3 8 0
Uniform 61 20 -2 0 18 7 2 5 9

0.02 Fixed Fixed 0 0 0 1 1 0 0 1
Clustered 0 0 0 1 1 0 0 1
Uniform 0 0 0 1 1 0 1 2

Clustered Fixed 0 0 0 1 0 0 1 6
Clustered 0 0 0 1 0 0 0 9
Uniform 0 0 0 1 16 0 0 6 0

Uniform Fixed 0 0 0 1 0 0 2 2
Clustered 0 0 0 1 0 0 2 2
Uniform 0 0 0 1 0 0 0 2

0.2 Fixed Fixed 1 0 0 0 -1 0 -2 -22 4
Clustered 1 0 0 -1 5 -10 -6 -15 3
Uniform 0 0 -1 -2 4 -8 -5 -19 4

Clustered Fixed 0 0 0 8 0 14 9 -1
Clustered 0 0 0 9 -1 -11 11 -14 5
Uniform 0 0 -1 16 8 3 5 -10 4

Uniform Fixed 3 0 23 14 -7 22 2 -7 10
Clustered 16 0 23 9 -3 -12 9 -16 8
Uniform 23 0 31 15 4 2 -3 -26 5

1
1
7

0
0
0
0
1

0
1
1

10

 
Table 1.  Percentage difference in performance between 2-Opt and human-directed surveillance.  Positive values indicate 
advantage for 2-Opt.  Boldface indicates a difference ≥ 10%. 
 
ground can all affect the fire spreading characteristics of a 
region of forest.  One possibility is to create a specialized 
interface for forest fire surveillance that facilitates changes 
to the model, but such specialization has drawbacks.  First, 
it implies the need for expensive, highly specialized 
expertise to formulate an initial model and to provide a 
customized interface that supports users in adapting the 
model.  Second, it reduces the flexibility of the platform 
for any given user, essentially requiring that they use it just 
as originally intended.  A more general approach would 
allow users to adapt not only to changes in the 
environment, but also to changing needs.  For example, 
forest management personnel may want to use a UAV 
mainly for fire surveillance, but also for additional jobs 
such as gathering scientific data for a long-term wildlife 
study or periodically checking vegetation conditions at 
remote sites. Using a general approach makes it possible to 
take on qualitatively new surveillance goals without 
making fundamental changes to the system. 

Decision-theoretic characterizations of user 
information needs and environment attributes provide a 
basis for optimal scheduling of surveillance actions, but 
are not necessarily intuitive.  Over an extended period of 
operation, the need to support users in modifying the 
models used for reconnaissance scheduling takes on added 
importance.  Personnel changes may cause loss of 

knowledge about the rationale underlying existing models.  
The capabilities and operational characteristics of the 
vehicle may change due to upgrades (or wear and tear).  
And, generally, the more time passes, the more reality will 
“drift” from what was captured in the original models.  
Addressing this problem – i.e. bridging the gap between 
user conceptualization of a task domain and 
mathematically precise but unintuitive representations of 
that domain is thus a key issue in providing intelligent 
surveillance capabilities for long duration missions in 
dynamic environments.   
 
Coordination and integration 
A third human-interaction issue is the need to integrate the 
autonomous surveillance agent into a larger system, 
coordinating its activities with those of other agents whose 
actions might prove helpful, harmful or redundant.  One 
clear need is to coordinate distributed information 
gathering activities.  For example, if an agent is intending 
to travel near a site that the surveillance agent intends to 
observe, it may do just as well to request that the agent 
(human or robot) make the observation instead.  Similarly, 
if an agent has already observed a site and returned the 
necessary information to the user, the surveillance agent 
should be made aware of it.  A second, related, facet of this 
integration/coordination problem is to track the changing 



goals and interests of the user and then automatically adapt 
surveillance strategy in support.  For example, the agent 
may be considering a plan whose outcome depends on 
knowing the likelihood of an event occurring at a given 
location.  The vehicle could support the planning process 
by including that location in its surveillance schedule in 
order to build up a statistical profile of the area. 
 Coordination cannot be achieved simply by 
providing a better interface to the vehicle.  It requires 
constructing technologies and procedures that support a 
shared environment, conceptually centralized even if 
physically distributed, for commanding and controlling 
resources, planning system wide activities and 
communicating activities and intentions to other agents.  
The need for this kind of environment is well-recognized 
in certain communities, particularly in the armed forces 
where highly integrated processes for command, control 
and communication have long been a key concept of 
operations.  More generally, this kind of integration 
represents a natural progression for many technologies 
including surveillance and reconnaissance agents.  As 
UAVs go from costly, rare and highly specialized assets to 
relatively inexpensive commodities used for long periods 
and diverse purposes, infrastructure will be developed to 
facilitate their integration into the larger operational 
environment. 
 

Future Work 
Our focus so far has been on surveillance decision-making 
and on characterizing the best role for humans in this 
process.  We expect to extend this work to consider more 
diverse factors and thus refine our understanding of how to 
allocate decision-making responsibilities between humans 
and machines.  As an extension to this effort, we expect to 
design decision aids to help human operators make 
surveillance decisions in operational contexts where no 
effective algorithmic approach is available.  The 
evaluation framework developed to compare algorithms to 
one another and to human operator performance should 
apply equally to the evaluation of human operators with 
and without candidate decision aids. 
 We are at a very early stage in our thinking about 
how to address the other human interaction problems 
identified above.  A range of techniques have been 
developed to help elicit utility knowledge from human 
experts (French 1986; Wang and Boutilier 2003), possibly 
providing a way to address the problem of acquiring 
domain models from users.  Dialogue management 
technologies have been applied successfully to the control 
of complex systems, and may prove effective for 
integrating user-initiated reconnaissance activities with 
ongoing surveillance.  Numerous new and emerging 
technologies are likely to prove invaluable for coordinating 
the activities of surveillance vehicle with other system 
activities.  For example, collaborative work environments 

might provide a framework for passively inferring user 
intentions and candidate plans, allowing a system to 
unobtrusively direct UAV reconnaissance and surveillance 
effort to the sites of greatest current relevance to the user. 
In general, UAV-based autonomous surveillance presents a 
range of open problems for diverse communities 
concerned with human-machine interaction. 
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